Reinforcement Learning Based Online Active Learning for Human Activity Recognition

Yulai Cui, **Shruthi Hiremath**, Thomas Plötz Georgia Institute of Technology

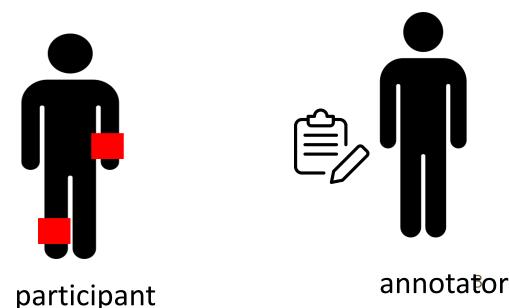
Human Activity Recognition

- Human Activity Recognition is at the core of ubiquitous computing
 - Health monitoring
 - Daily Living
 - Sports monitoring
- Predominantly supervised learning of HAR models

Parkinson's Disease Symptoms

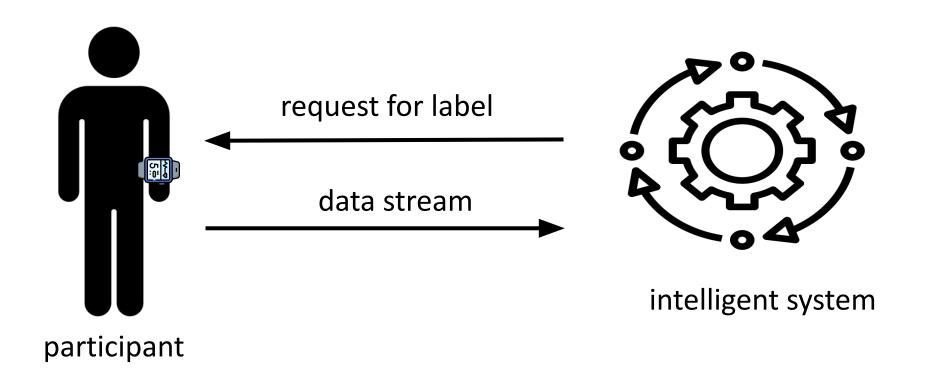
Annotation challenges for HAR

- Predominantly supervised learning of HAR models
- Challenging to acquire annotations
 - Traditional methods include manual labelling by experts / researchers
 - Resource Intensive
 - expensive, time-consuming



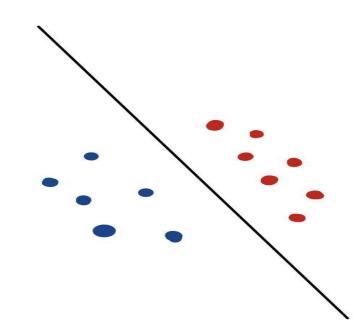
Active Learning

• Can participants provide activity labels?



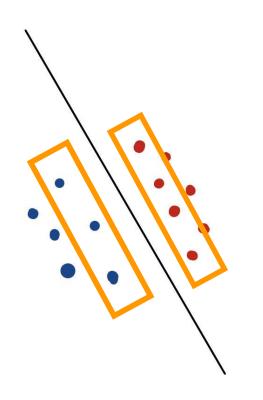
Active Learning

 Active Learning - a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns.



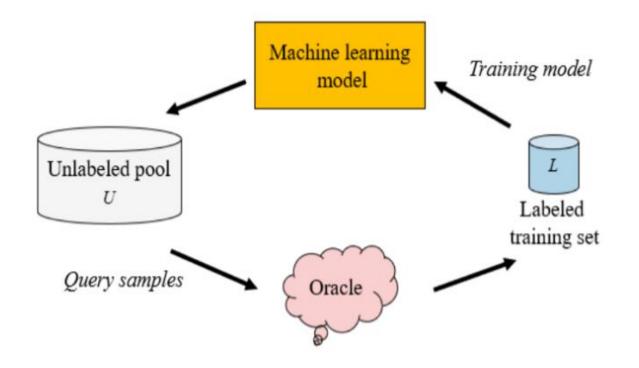
Active Learning

• Active learning: the most informative data points are important for model-training



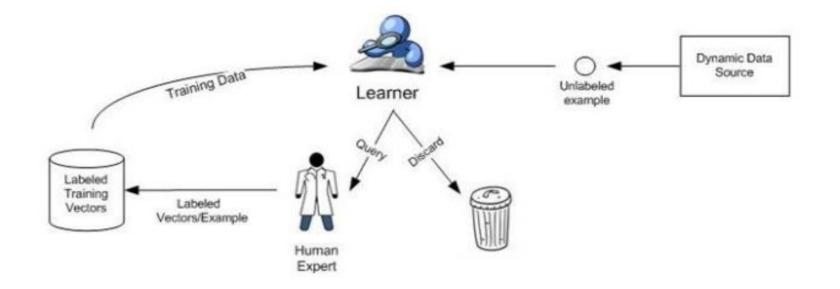
Active Learning - Pool-based

- Pool-based Active Learning
 - all unlabeled data is available to be choose from during training



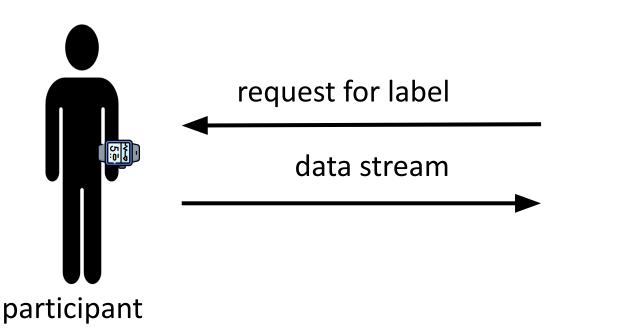
Active Learning - Stream-based

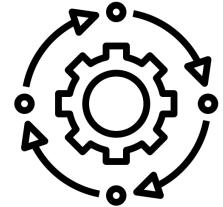
Stream-based or Online Active Learning
 o data arrives in a sequential fashion



Budget-based Active Learning

- Budget
 - \circ how many annotations ?
- Budget-spending strategies
 when do we ask the participant for annotations?

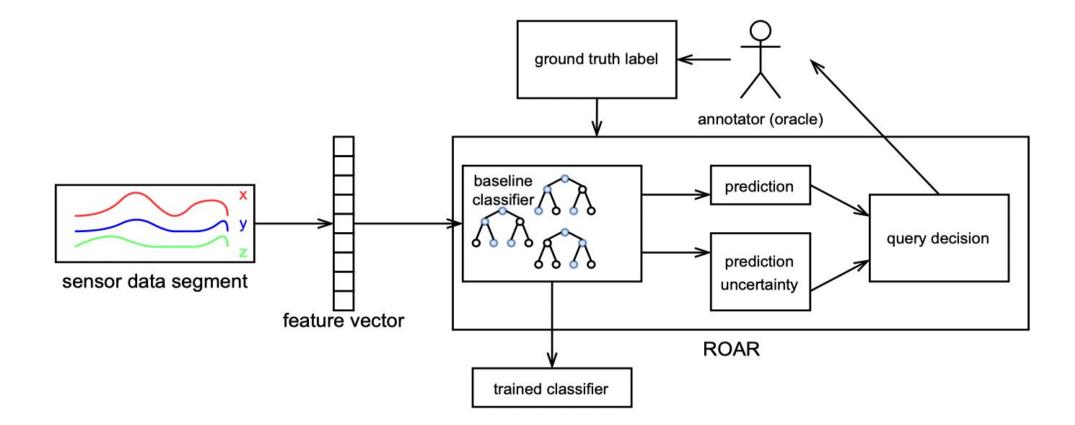


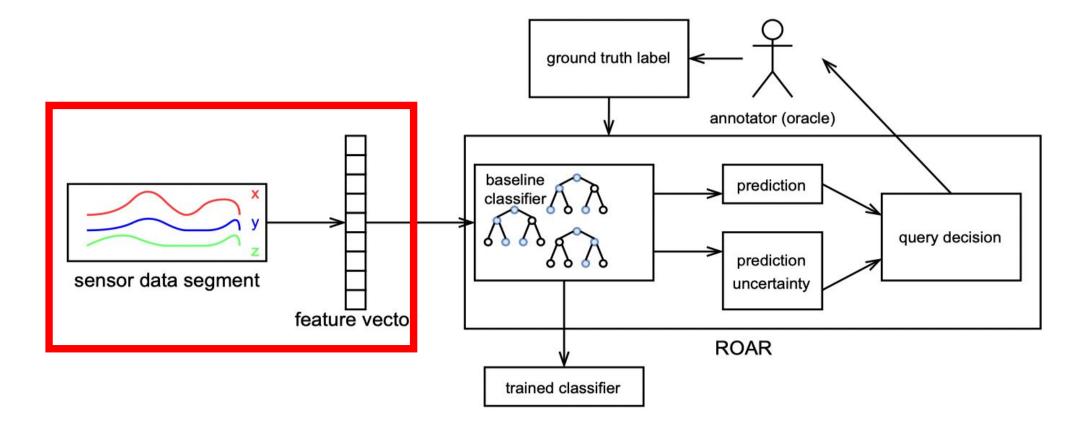


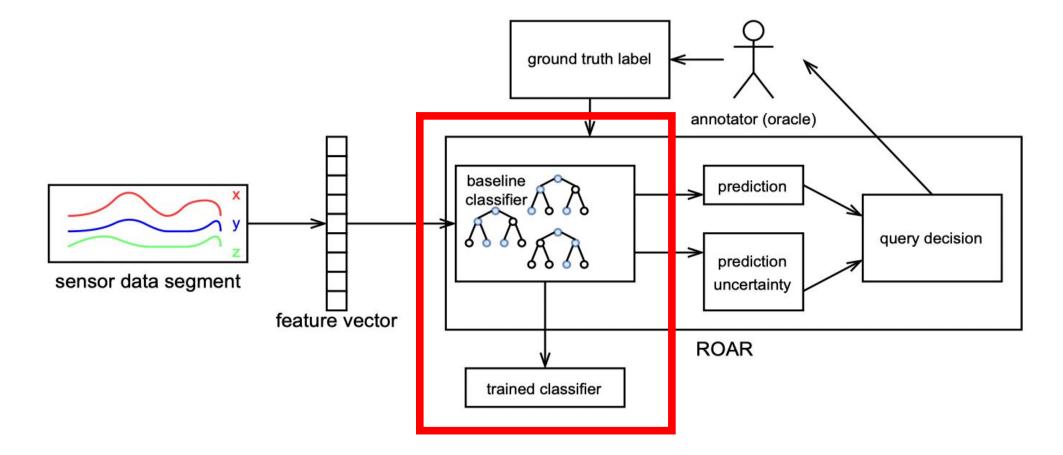
intelligent system

Existing Online Active Learning Approaches

- Measure of Uncertainty classification confidence
- Pre-train models with data from all classes

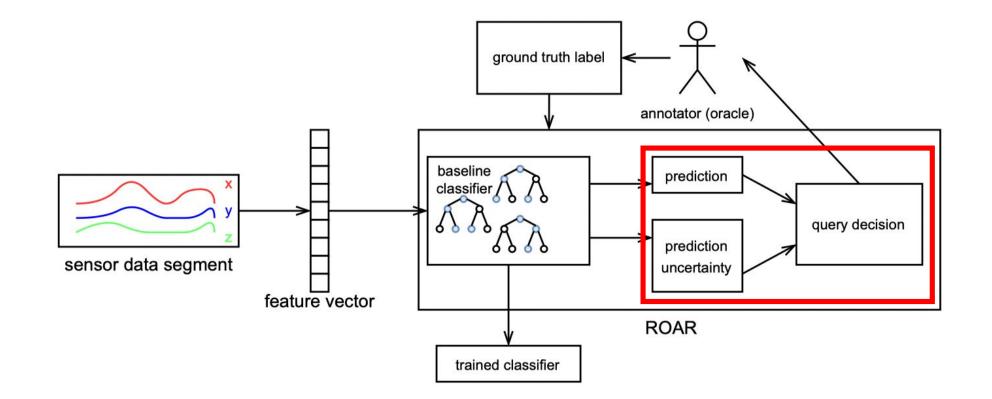






Query decision

 $\circ\,$ Decide whether to ask annotator (oracle) for the label of an incoming data



Query Decision (Policy):

if $p < \epsilon$ or $y_{conf} < \theta$ then $y \leftarrow askOracle(\mathbf{x})$

Policy Update:

$$\theta \leftarrow \min(\theta(1 + \eta \times (1 - 2^{\frac{r}{p^{-}}})), 1)$$

 \circ policy (θ): a threshold for decision confidence

- reward (r): updates the probability(p) for policy
- \circ η : learning rate
- p-: negative absolute value of the reward

• Experimental Simulation

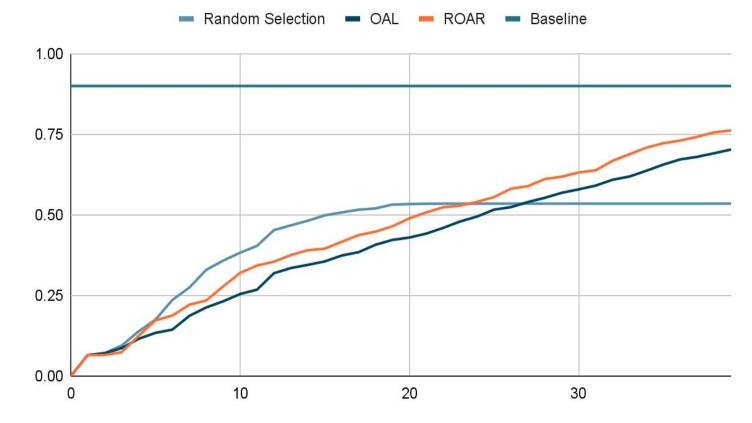
 \circ Employ 80 / 20 for the train-test split

- user specific analysis
- dataset is unshuffled
- activities are present in both train and test set

 \circ Budget - 40 samples from train set

• Evaluation - test set

Average F1 Score on PAMAP2



Miu, T., Missier, P., & Plötz, T. (2015, October). Bootstrapping personalised human activity recognition models using online active learning. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (pp. 1138-1147). IEEE. 18

Dataset	Random	OAL	ROAR	Baseline
USC-HAD	0.52±0.17	0.62±0.13	0.69±0.12	0.87±0.10
Daphnet	0.60±0.21	0.66±0.22	0.73±0.20	0.78±0.17
PAMAP2	0.54±0.11	0.70±0.12	0.76±0.07	0.90±0.05
Opportunity	0.34±0.11	0.33±0.06	0.37±0.10	0.40±0.11
Skoda	0.61±0.05	0.65±0.01	0.76±0.01	0.98±0.01
MHealth	0.74±0.07	0.51±0.04	0.87±0.08	0.90±0.06
WARD	0.53±0.11	0.67±0.13	0.68±0.12	0.88±0.11

Dataset	Random	OAL	ROAR	Baseline
USC-HAD	0.52±0.17	0.62±0.13	0.69±0.12	0.87±0.10
Daphnet	0.60±0.21	0.66±0.22	0.73±0.20	0.78±0.17
PAMAP2	0.54±0.11	0.70±0.12	0.76±0.07	0.90±0.05
Opportunity	0.34±0.11	0.33±0.06	0.37±0.10	0.40±0.11
Skoda	0.61±0.05	0.65±0.01	0.76±0.01	0.98±0.01
MHealth	0.74±0.07	0.51±0.04	0.87±0.08	0.90±0.06
WARD	0.53±0.11	0.67±0.13	0.68±0.12	0.88±0.11

CONCLUSION

- Obtaining ground truth annotations is hard
- We employ an online active learning procedure for HAR using a RL approach
- For a given budget size
 - ROAR intelligently queries data points
 - $\circ\,$ In half the cases, we get close to fully supervised baselines